A code for the automated exploration of reactive potential energy surfaces

The KinBot software is an integrated tool that crawls on reactive potential energy surfaces automatically, and discovers and characterizes reaction pathways in a way that lends itself directly to master equation calculations. CRF Blog article.

Target systems

  • Gas-phase reactions with relevance to combustion and atmospheric chemistry


  • Full conformational search
  • Automatic hindered rotor scans
  • Automatic frequency projection in the 1-D hindered rotor approximation
  • Automatic IRCs to test connectivity
  • Multiple levels of electronic structure theory
  • Automatic external and internal symmetry determination
  • Full exploration of multiwell systems
  • Plotting of the PESs via the PESViewer code
  • Currently supported electronic structure code: Gaussian 09
  • Supported master equation solvers: MESS and MESMER


Description of KinBot 2.0

  • Van de Vijver, R., Zádor, J.: KinBot: Automated stationary point search on potential energy surfaces. Computer Physics Communications, 2020 248

Using KinBot 1.0

  • Van de Vijver, R., Van Geem, K. M., Marin, G. B., Zádor, J.: Decomposition and isomerization of 1-pentanol radicals and the pyrolysis of 1-pentanol. Combustion and Flame, 2018 196 500-514.
  • Grambow, C. A., Jamal, A., Li, Y.-P., Green, W. H., Zádor, J., Suleimanov, Y. V.: New unimolecular reaction pathways of a g-ketohydroperoxide from combined application of automated reaction discovery methods. Journal of the American Chemical Society, 2018 140 1035-1048.
  • Rotavera, B., Savee, J. D., Antonov, I. O., Caravan, R. L., Sheps, L., Osborn, D. L., Zádor, J., Taatjes, C. A.: Influence of oxygenation in cyclic hydrocarbons on chain-termination reactions from R + O2: tetrahydropyran and cyclohexane. Proceedings of the Combustion Institute, 2017 36 597-606.
  • Antonov, I. O., Zádor, J., Rotavera, B., Papajak, E., Osborn, D. L., Taatjes, C. A., Sheps, L.: Pressure-Dependent Competition among Reaction Pathways from First- and Second-O2 Additions in the Low-Temperature Oxidation of Tetrahydrofuran. Journal of Physical Chemistry A 2016, 120 6582-6595.
  • Antonov, I. O., Kwok, J., Zádor, J., Sheps, L.: OH + 2-butene: A combined experimental and theoretical study in the 300-800 K temperature range. Journal of Physical Chemistry A, 2015 119 7742-7752.
  • Zádor, J., Miller, J.A.: Adventures on the C3H5O potential energy surface: OH + propyne, OH + allene and related reactions. Proceedings of the Combustion Institute, 2015 35 181-188.
  • Rotavera, B., Zádor, J., Welz, O., Sheps, L., Scheer, A.M., Savee, J.D., Ali, M.A., Lee, T.S., Simmons, B.A., Osborn, D.L., Violi, A., Taatjes, C.A.: Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane. Journal of Physical Chemistry A, 2014 44 10188-10200.